Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-(Oxydimethylene)dibenzonitrile

Jie Xiao and Hong Zhao*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 19 June 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.064; wR factor = 0.150; data-to-parameter ratio = 17.5.

The title compound, $C_{16}H_{12}N_2O$, was accidentally synthesized by the reaction of 4-(bromomethyl)benzonitrile and pentaerythritol. The dihedral angle between the benzene rings is 57.39 (9)°. In the crystal structure, molecules are linked by intermolecular $C-H \cdots N$ hydrogen-bonding interactions to form chains running parallel to the *b* axis.

Related literature

For applications of nitrile derivatives in the synthesis of some heterocyclic molecules, see: Radl *et al.* (2000); Jin *et al.* (1994). For the crystal structure of a related compound, see: Fu & Zhao (2007).

Experimental

Crystal data

 $C_{16}H_{12}N_2O$ $M_r = 248.28$ Monoclinic, $P2_1/c$ a = 14.444 (3) Å

b = 7.6674 (13) Å	
c = 11.897 (2) Å	
$\beta = 96.326 \ (14)^{\circ}$	
V = 1309.6 (4) Å ³	
Z = 4	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.939, T_{max} = 0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ 172 parameters $wR(F^2) = 0.149$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$ 3007 reflections $\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C14-H14\cdots N2^i$ 0.93 2.60 3.490 (3)
 162

 Symmetry code: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{5}{2}.$ $z = \frac{1}{2}$ $z = \frac{1}{2}$ $z = \frac{1}{2}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.35 \times 0.30 \times 0.30$ mm

13064 measured reflections

3007 independent reflections

1498 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.071$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by a Start-up Grant from Southeast University to HZ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2229).

References

Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, 03206.

Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.

Radl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, 01436 [doi:10.1107/S1600536808020527]

4,4'-(Oxydimethylene)dibenzonitrile

J. Xiao and H. Zhao

Comment

Nitrile derivatives are an important class of compounds used in the chemical industry. For example, nitrile derivatives are employed in the synthesis of some heterocyclic molecules (Radl *et al.*, 2000), and have been used as starting materials for the synthesis of phthalocyanines (Jin *et al.*, 1994). Recently, we have reported the crystal structure of a benzonitrile compound (Fu & Zhao, 2007). The title compound was unexpectedly obtained during our work on nitrile compounds, and its crystal structure is reported here.

In the title compound (Fig. 1), bond lengths and angles have normal values. The planes through the C2—C7 and C10—C15 benzene rings form a dihedral angle of 57.39 (9)°. The crystal structure is stabilized by an intermolecular C—H···N hydrogen bond forming chains of molecules along the b-axis (Table 1).

Experimental

Pentaerythritol (0.136 g, 1 mmol) and 4-(bromomethyl)benzonitrile (0.658 g, 4 mmol) were dissolved in water in the presence of sodium hydroxide (0.160 g, 4 mmol) and heated under reflux for 2 days. After the mixture was cooled to room temperature, the solvent was removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml diethylether by slow evaporation after 5 days.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

4,4'-(Oxydimethylene)dibenzonitrile

Crystal data	
$C_{16}H_{12}N_2O$	$F_{000} = 520$
$M_r = 248.28$	$D_{\rm x} = 1.259 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Hall symbol: -P 2ybc a = 14.444 (3) Å b = 7.6674 (13) Åc = 11.897 (2) Å $\beta = 96.326 (14)^{\circ}$ V = 1309.6 (4) Å³ Z = 4

Data collection

Cell parameters from 1930 reflections	
$\theta = 2.8 - 27.5^{\circ}$	
$\mu = 0.08 \text{ mm}^{-1}$	
T = 293 (2) K	
Block, colourless	
$0.35 \times 0.30 \times 0.30$ mm	

Rigaku Mercury2 diffractometer	3007 independent reflections
Radiation source: fine-focus sealed tube	1498 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.072$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.8^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: Multi-scan (CrystalClear; Rigaku, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.939, \ T_{\max} = 0.978$	$l = -15 \rightarrow 15$
13064 measured reflections	

Refinement

1

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0573P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3007 reflections	$\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.21121 (10)	0.2174 (2)	0.82830 (14)	0.0632 (5)
C13	0.40291 (15)	0.6678 (3)	1.0392 (2)	0.0543 (6)
C5	-0.05516 (16)	0.2145 (3)	0.5362 (2)	0.0530 (6)
C1	0.17453 (17)	0.0647 (3)	0.7737 (2)	0.0610 (7)
H1A	0.1547	-0.0163	0.8289	0.073*
H1B	0.2218	0.0082	0.7346	0.073*
C16	0.43912 (17)	0.8289 (4)	1.0896 (2)	0.0647 (7)
C3	0.10674 (17)	0.2247 (3)	0.6017 (2)	0.0616 (7)
Н3	0.1662	0.2664	0.5941	0.074*
C2	0.09330 (16)	0.1156 (3)	0.69105 (19)	0.0505 (6)
C11	0.33163 (17)	0.5062 (3)	0.8811 (2)	0.0608 (7)
H11	0.3073	0.5020	0.8054	0.073*
C7	0.00448 (17)	0.0575 (3)	0.7016 (2)	0.0592 (7)
H7	-0.0057	-0.0156	0.7614	0.071*
C4	0.03367 (17)	0.2726 (3)	0.5241 (2)	0.0624 (7)
H4	0.0440	0.3439	0.4635	0.075*
C10	0.33245 (15)	0.3570 (3)	0.9471 (2)	0.0539 (6)
C6	-0.06975 (17)	0.1060 (3)	0.6249 (2)	0.0618 (7)
H6	-0.1294	0.0657	0.6331	0.074*
C9	0.29580 (16)	0.1870 (3)	0.8972 (2)	0.0659 (7)
H9A	0.3410	0.1358	0.8524	0.079*
H9B	0.2855	0.1062	0.9572	0.079*
C12	0.36687 (17)	0.6610 (3)	0.9274 (2)	0.0625 (7)
H12	0.3662	0.7608	0.8828	0.075*
C14	0.40499 (17)	0.5201 (3)	1.1048 (2)	0.0619 (7)
H14	0.4302	0.5241	1.1801	0.074*
C15	0.36940 (16)	0.3653 (3)	1.0584 (2)	0.0625 (7)
H15	0.3705	0.2657	1.1031	0.075*
C8	-0.13138 (19)	0.2686 (3)	0.4553 (2)	0.0640 (7)
N2	0.46806 (17)	0.9545 (3)	1.1316 (2)	0.0850 (8)
N1	-0.19108 (17)	0.3162 (3)	0.3912 (2)	0.0883 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0528 (10)	0.0591 (10)	0.0733 (11)	0.0012 (8)	-0.0121 (8)	-0.0152 (8)
C13	0.0438 (13)	0.0670 (16)	0.0511 (15)	-0.0015 (11)	0.0004 (11)	-0.0064 (12)
C5	0.0529 (15)	0.0533 (14)	0.0521 (15)	0.0004 (11)	0.0024 (12)	-0.0107 (11)
C1	0.0591 (16)	0.0546 (15)	0.0677 (17)	-0.0037 (12)	0.0000 (13)	-0.0063 (12)
C16	0.0568 (16)	0.0752 (19)	0.0604 (17)	-0.0035 (13)	-0.0009 (13)	-0.0087 (14)
C3	0.0477 (15)	0.0689 (17)	0.0690 (17)	-0.0086 (12)	0.0107 (13)	0.0035 (13)
C2	0.0524 (14)	0.0463 (13)	0.0527 (15)	-0.0039 (11)	0.0050 (11)	-0.0096 (11)
C11	0.0572 (16)	0.0742 (18)	0.0479 (15)	-0.0013 (12)	-0.0078 (12)	-0.0039 (13)
C7	0.0594 (16)	0.0601 (16)	0.0586 (16)	-0.0125 (12)	0.0082 (13)	-0.0004 (12)

C4	0.0607 (17)	0.0676 (17)	0.0600 (16)	-0.0025 (13)	0.0117 (13)	0.0057 (12)
C10	0.0405 (13)	0.0632 (16)	0.0567 (15)	0.0052 (11)	-0.0002 (11)	-0.0076 (12)
C6	0.0525 (15)	0.0656 (17)	0.0678 (17)	-0.0138 (12)	0.0086 (13)	-0.0060 (13)
С9	0.0538 (15)	0.0664 (17)	0.0743 (18)	0.0051 (12)	-0.0065 (13)	-0.0083 (13)
C12	0.0646 (16)	0.0652 (17)	0.0558 (16)	-0.0057 (13)	-0.0020 (13)	0.0029 (12)
C14	0.0548 (16)	0.0772 (19)	0.0508 (15)	0.0023 (13)	-0.0072 (12)	-0.0038 (13)
C15	0.0580 (15)	0.0650 (17)	0.0619 (17)	0.0042 (12)	-0.0044 (13)	0.0063 (13)
C8	0.0621 (17)	0.0638 (17)	0.0654 (18)	-0.0015 (13)	0.0041 (14)	-0.0083 (13)
N2	0.0928 (19)	0.0813 (18)	0.0772 (17)	-0.0108 (14)	-0.0071 (14)	-0.0135 (14)
N1	0.0732 (16)	0.0958 (18)	0.0919 (19)	0.0035 (14)	-0.0094 (14)	0.0044 (15)
Geometric j	parameters (Å, °)					
01		1 414 (3)	C11-	-C12	1 38	2 (3)
01 - C1		1.414(3)	C11-	-C10	1.38	7 (3)
C13-C14		1.111(2) 1.374(3)	C11-	-H11	0.93	00
C13 - C12		1.375 (3)	C7-		1 38	0(3)
C13-C12		1.375(3)	C7—	С0 Н7	0.03	00
C13-C10		1.445(3) 1.370(3)	C/	н <i>і</i>	0.93	00
C_{3}		1.379(3)	C10	C15	0.93	3 (3)
C_{3}		1.360(3)	C10-	-013	1.57	3 (3) 4 (2)
C_{1}		1.441(3)	C10-	-09	1.50	4(3)
C1 - C2		1.497 (3)	C0—		0.93	00
$CI = \Pi IA$		0.9700	C9—	п9А	0.97	00
C1 - M2		0.9700	C9—	пу Б ц12	0.97	00
C10-N2		1.142(3)	C12-	-п12	0.93	4 (2)
$C_3 - C_4$		1.374(3)	C14-	-015	1.38	4 (3)
$C_3 - C_2$		1.384 (3)	C14-	-H14	0.93	00
C3—H3		0.9300	C15-	-HIJ	0.93	5 (2)
C2—C7		1.577 (5)	Co		1.14	5 (5)
C9—01—C	1	112.70 (17)	C3—	C4—C5	119.	9 (2)
C14—C13—	-C12	120.0 (2)	C3—	С4—Н4	120.	1
C14—C13—	-C16	119.0 (2)	C5—	С4—Н4	120.	1
C12—C13—	-C16	121.0 (2)	C15-	-C10C11	119.	1 (2)
C6—C5—C	4	119.8 (2)	C15–	-С10-С9	120.	2 (2)
C6—C5—C	8	121.0 (2)	C11–	-C10C9	120.	7 (2)
C4—C5—C	8	119.2 (2)	C5—	C6—C7	119.	7 (2)
01—C1—C	2	108.22 (18)	C5—	С6—Н6	120.	1
01—С1—Н	11A	110.1	С7—	С6—Н6	120.	1
С2—С1—Н	1A	110.1	01—	C9—C10	109.	29 (19)
01—С1—Н	1B	110.1	01—	С9—Н9А	109.	8
С2—С1—Н	1B	110.1	C10–	-С9—Н9А	109.	8
HIA—CI—	H1B	108.4	01—	С9—Н9В	109.	8
N2-C16-C	C13	178.5 (3)	C10–	-С9—Н9В	109.	8
C4—C3—C	2	121.0 (2)	H9A-	—С9—Н9В	108.	3
С4—С3—Н	3	119.5	C13–	-C12-C11	120.	1 (2)
С2—С3—Н	3	119.5	C13–	-С12—Н12	119.	9
С7—С2—С	3	118.5 (2)	C11–	-С12—Н12	119.	9
С7—С2—С	1	121.8 (2)	C13–	-C14C15	119.	8 (2)
С3—С2—С	1	119.7 (2)	C13–	C14H14	120.	1

C12—C11—C10 C12—C11—H11 C10—C11—H11 C2—C7—C6 C2—C7—H7	120.2 (2) 119.9 119.9 121.1 (2) 119.4	C15—C14—H14 C10—C15—C14 C10—C15—H15 C14—C15—H15 N1—C8—C5		120.1 120.8 (2) 119.6 119.6 178.1 (3)
C2—C7—H7 C6—C7—H7 <i>Hydrogen-bond geometry (Å, °)</i>	119.4	NI-Co-C3		178.1 (5)
<i>D</i> —H··· <i>A</i> C14—H14···N2 ⁱ Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+5/$	<i>D</i> —Н 0.93 2.	H…A 2.60	<i>D</i> … <i>A</i> 3.490 (3)	<i>D</i> —Н… <i>А</i> 162

Fig. 1

